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Abstract 
COSMIC-FFP is a rigorous measurement method that makes possible to measure the functional 

size of the software, based on identifiable functional user requirements allocated onto different 
layers, corresponding to different levels of abstraction. The key concepts of COSMIC-FFP are 
software layers, functional processes and four types of data movement (sub-processes). A precise 
COSMIC-FFP measure can then be obtained only after the functional specification phase, while for 
forecasting reasons the Early & Quick COSMIC-FFP technique has been subsequently provided, 
for using just after the feasibility study phase. 

This paper shows how the Analytic Hierarchy Process, a quantification technique of subjective 
judgements, can be applied to this estimation technique in order to improve significantly its self-
consistency and robustness. The AHP technique, based on pair-wise comparisons of all (or some 
of) the items of the functional hierarchical structure of the software provided by E&Q COSMIC-
FFP, provides the determination of a ratio scale of relative values between the items, through a 
mathematical normalization. Consequently, it is not necessary either to evaluate the numerical 
value of each item, or to use statistical calibration values, since the true values of only one or few 
components are propagated in the ratio scale of relative values, providing the consistent values for 
the rest of the hierarchy. 

This merging of E&Q COSMIC-FFP with AHP results in a more precise estimation method 
which is robust to errors in the pair-wise comparisons, and self-consistent because of the 
redundancy and the normalization process of the comparisons. 

  
1. COSMIC Full Function Point Overview 

 
The COSMIC-FFP measurement method consists of the application of a set of rules and 

procedures to a given piece of software in order to measure its functional size. Two distinct and 
related phases are necessary to perform the measurement: mapping the functional user requirements 
(FURs) for the software to be measured onto the COSMIC-FFP software model and then measuring 
the specific elements of this software model (Figure 1). 
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Figure 1. COSMIC-FFP measurement process model [1]. 
 

The COSMIC-FFP software model captures the concepts, definitions and relationships 
(functional structure) required for a functional size measurement exercise. Depending on how the 
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FURs are allocated, the resulting software might be implemented in a number of  pieces. While all 
the pieces exchange data, they will not necessarily operate at the same level of abstraction. The 
COSMIC-FFP method introduces the concept of the software layer to help differentiate levels of 
abstraction of the FURs. 

The functionality of each layer may be composed of a number of functional processes. A 
functional process is defined as a “unique and ordered set of data movements (Entry, eXit, Read, 
Write) implementing a cohesive set of FURs.” The COSMIC-FFP software model distinguishes 
four types of data movement sub-process: in the “front end” direction, two types of movement 
(Entry and eXit) allow the exchange of data attributes with the users (or other layers); in the “back 
end” direction, two types of movement (Read and Write) allow the exchange of data attributes with 
the storage hardware (Figure 2). These data movements are also referred to as BFC’s (Base 
Functional Components). 
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Figure 2. COSMIC-FFP software model and data movement types [1]. 

 
The COSMIC-FFP measurement rules and procedures are then applied to the software model in 

order to produce a numerical figure representing the functional size of the software, layer by layer. 
The unit of measurement is 1 data movement, referred to as 1 COSMIC Functional Size Unit, e.g. 1 
CFSU. Theoretically, functional processes can be assigned any size expressed in CFSU (from 1 to no 
theoretical limit - they are not bounded, but in practice they’re expected to have some sort of 
“natural” upper boundary, or cut-off). 

Conceptually, the mapping phase of the COSMIC-FFP method can be considered as a process of 
“viewing” a software from different levels of functional detail. First, the software is viewed at the 
highest level as composed of software layers, if applicable. Then, each software layer is viewed at a 
lower level of detail, i.e. functional processes. Finally, each functional process is in turn viewed at 
the lowest level of detail of interest for measurement with COSMIC-FFP, that is, sub-processes 
(data movement types, or BFC’s). 

 
2. Early & Quick COSMIC-FFP Overview 

 
Functional size of software to be developed can be measured precisely after functional 

specification stage. However, functional specification is often completed relatively late in the 
development process and a significant portion of the budget has already been spent. If we need the 
functional size earlier, we must accept a lower level of precision since it can only be obtained from 
less precise information. 

The Early & Quick COSMIC-FFP method (E&QCFFP, [2]) has been designed to provide 
practitioners with an early and quick forecast of the functional size, based on the hierarchical 
system representation cited in the previous section, which can be used for preliminary technical and 
managerial decisions at early stages of the development cycle. Of course, a precise standard 
measure must always be carried out in the later phases to confirm the validity of decisions already 



taken. Here, “Early” means that we may obtain this value before having committed a significant 
amount of resources to a project; “Quick” means that we may also use the technique when the 
software is an existing asset and some constraints (such as costs and time) prevent a precise 
measurement. 

The starting point for an E&QCFFP estimation is the acknowledgement of the hierarchical 
structure in the functional requirements for the software to be estimated: when we document a 
software structure, we usually name the root as the application level and then we go down to 
defining single nodes, each one with a name that is logically correlated to the functions included; 
we reach the leaf level when we don’t think it is useful to proceed to a further decomposition. In the 
COSMIC-FFP model, the leaves are the functional processes. 

On the one hand, in the early stages it is not possible to distinguish the single data movements, or 
BFC’s, because the information is not available at this level of detail. On the other hand, however, 
the preliminary hierarchical structure of the software shows as leaves what are actually nodes in the 
detailed version. What is required early on in the life cycle is, then, to assign forecasts of average 
process size, in CFSU, at the intermediate and top levels in such a way that the final result will be 
obtained by the aggregation of the intermediate results.  

The E&QCFFP technique is based on the capability of the estimator to “recognize” a software 
item as belonging to a particular functional class; an appropriate table, then, allows the estimator to 
assign a CFSU average value for that item (this is applied for each identified layer separately). Each 
functions can be classified, in order of increasing magnitude, as Functional Process, General 
Process, or Macro-Process (Figure 3): 
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Figure 3. Hierarchical process decomposition in E&QCFFP. 

 
a) A Functional Process (FP) is the smallest process, performed with the aid of the software 

system, with autonomy and significance characteristics. It allows the user to attain a unitary 
business or logical objective at the operational level. It is not possible, from the user’s point of 
view, to proceed to further useful decomposition of a Functional Process without violating the 
principles of significance, autonomy and consistency of the system. A Functional Process can 
be Small, Medium or Large, depending on its estimated number of BFC’s (E,X,R,W). 

b) A General Process (GP) is a set of medium Functional Processes and may be likened to an 
operational sub-system of the application. A GP can be Small, Medium or Large, based on its 
estimated number of Functional Processes. 

c) A Macro-Process (MP) is a set of medium General Processes and may be likened to a relevant 
sub-system of the overall Information System of the user’s organisation. A MP can be Small, 
Medium or Large, based on its estimated number of General Processes. 

Note that each level is built up on the basis of the previous one. There is a 4th type of process, the 
Typical Process (TP), which is off-line from the hierarchical structure outlined: it’s just the set of 



the four frequently used Functional Processes, which are: Create, Retrieve, Update and Delete 
(CRUD) information in a relevant data group. 

Each E&QCFFP element is associated with three values in terms of CFSU (minimum, most likely 
and maximum). These numerical assignments are not reported, since they are currently subject to 
definition and trial on the basis of the data collection activity and statistical analysis for actual 
projects in the Field Trial Phase of the COSMIC-FFP method. Next Table 1 reports the ranges to 
help in classify the items of the estimation (the quantities n1, n2, n3 are to be found out empirically 
during the Field Trial Phase). 

 
Table 1. Scale ranges and numerical EFP assignments. 

Small Functional Process n1 (CFSU) 
Medium Functional Process n2 (CFSU) 
Large Functional Process n3 (CFSU) 
Small General Process 6-12 FP’s 
Medium General Process 13-19 FP’s 
Large General Process 20-25 FP’s 
Small Macro-Process 2-3 GP’s 
Medium Macro-Process 4-7 GP’s 
Large Macro-Process 8-12 GP’s 

 
One advantage of this technique is that estimates can be based on different and non 

homogeneous levels of detail in the knowledge of the software structure. If a part of the software is 
known at a detail level, this knowledge may be used to estimate it at the Functional Process level, 
and, if another part is only superficially known, then a higher level of classification may be used. 
The overall global uncertainty in the estimate will then be the weighted sum of the individual 
components’ uncertainties. This property is better known as multi-level estimation. 

Another characteristic of the E&QCFFP technique is that it mixes both an analytical approach 
(use of the composition table, Table 1) and an analogy-based approach (the analogy can be used 
with respect to an abstract model or to a concrete set of software objects actually collected and 
classified, helping to classify the unknown items). 

 
3. The Analytic Hierarchy Process (AHP) 

 
The Analytic Hierarchy Process ([4]) provides a means of making decisions or choices among 

alternatives, particularly where a number of objectives have to be satisfied (multiple criteria or 
multi-attribute decision making) (Figure 4). 

 

Overall Objective 

Attribute 1 

2 n 1 ... 

Attribute 2 

2 n 1 ...  

Attribute m 

2 n 1 ...  

... 

Alternatives (items) 
 

Figure 4. Generic hierarchy scheme. 



 
Let’s assume that n items are being considered with the goal of providing and quantifying 

judgements on the relative weight (importance) of each item with respect to all the other items. The 
first step (design phase) set the problem as a hierarchy, where the topmost node is the overall 
objective of the decision, while subsequent nodes at lower levels consist of the criteria used in 
arriving at this decision. The bottom level of the hierarchy consists of the alternatives from which 
the choice is to be made, i.e., the n items we wish to compare. 

The second step (evaluation phase) requires pair-wise comparisons to be made between each two 
items (of the given level of the hierarchy), with respect to their contribution towards the factor from 
the level immediately above them. The comparisons are made by posing the question ‘Of two 
elements i and j, which is more important (larger) with respect to the given factor and how much 
more?’. The strength of preference is usually expressed on a ratio scale of 1-9. A preference of 1 
indicates equality between two items while a preference of 9 (absolute importance) indicates that 
one item is 9 times larger or more important than the one to which is being compared. This scale 
was originally chosen, because in this way comparisons are being made within a limited range 
where perception is sensitive enough to make a distinction [4]. 

These pair-wise comparisons result in a reciprocal n-by-n matrix A, where aii = 1 (i.e., on the 
diagonal) and aji = 1/ aij (reciprocity property, i.e., assuming that if element i is “x-times” more 
important than item j, then necessarily item j is “1/x-times” more important, or equally “x-times” 
less important than item i). 

Suppose firstly that we provide only the first column of the matrix A, i.e., the relative importance 
of items 2, 3, .., n, with respect to item 1. If our judgements were completely consistent, the 
remaining columns of the matrix would then be completely determined, because of the transitivity 
of the relative importance of the items. However we do not assume consistency other than by 
setting aji = 1/ aij. Therefore we repeat the process of comparison for each column of the matrix, 
making independent judgements over each pair. Suppose that at the end of the comparisons, we 
have filled the matrix A with the exact relative weights; if we multiply the matrix with the vector of 
weights w = (w1, w2, …, wn), we obtain: 
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So, to recover the (overall) scale from the matrix of ratios, we must solve the problem: 

 
Aw = nw, or (A-nI)w = 0, 

 
that is a system of homogenous linear equations (I is the unitary matrix). This system has a 
nontrivial solution if and only if the determinant of (A-nI) vanishes, i.e., n is an eigenvalue of A. 
Notice that A has unit rank since every row is a constant multiple of the first row and thus all its 
eigenvalues except one are zero. The sum of the eigenvalues of a matrix is equal to its trace and in 
this case, the trace of A is equal to n. Thus n is an eigenvalue of A and we have a nontrivial solution, 
unique to within a multiplicative constant, with all positive entries. Usually the normalized vector is 
taken, obtained by dividing all the entries wi by their sum. 

Thus given the comparison matrix we can recover the scale. In this exact case the solution is any 
column of A normalized. Note also that in the exact case A is consistent, i.e., its entries satisfy the 
condition ajk = aji/aki (transitivity property). However in real cases we cannot give the precise values 
of wi/wj but estimates of them, the judgements, which in general are different from the actual 
weights’ ratios. From matrix theory we know that small perturbation of the coefficients implies 



small perturbation of the eigenvalues. Therefore, we still expect to find an eigenvalue, with value 
near to n: this will be the largest eigenvalue (λmax), since due to the (small) errors in the judgement, 
also other eigenvalues are different from zero, but still the trace of matrix (n) is equal to the sum of 
eigenvalues (some of which can be complex). 

The solution of the largest eigenvalue problem, i.e., the weight eigenvector w corresponding to 
λmax, when normalized, gives a unique estimate of the underlying ratio scale between the elements 
of the studied case. Moreover,  the matrix whose entries are wi/wj is still a consistent matrix, and is a 
consistent estimate of the “actual” matrix A. A itself need not be consistent (for example the 
judgements could have stated that item 1 is more important than item 2, 2 is more important than 3, 
but 3 is more important than 1!). It turns out that A is consistent if and only if λmax = n and that we 
always have λmax ≥ n. That’s why we take as a “consistency index” (CI) the (negative) average of 
the remaining eigenvalues, which is exactly the difference between λmax and n, divided by the 
normalizing factor (n-1): 
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To measure the error due to inconsistency, we can compare the CI of the studied case with the 

average CI obtained from corresponding random matrices with order n and maximum ratio scale r. 
Table 2 shows the random average consistency indexes Cin,r for various n and r. Revisions in the 
pair-wise comparisons are recommended if the consistency ratio (CR) between the studied CI and 
the corresponding CIn,r is considerably higher than 10%. 

 
Table 2. Consistency indexes (Cin,r). 

 R 
n 2 3 4 5 6 7 8 9 10 
5 0,07 0,13 0,20 0,26 0,31 0,37 0,41 0,48 0,51 
6 0,07 0,14 0,21 0,27 0,34 0,39 0,46 0,50 0,57 
7 0,07 0,15 0,22 0,29 0,35 0,42 0,48 0,53 0,60 
8 0,07 0,15 0,23 0,30 0,37 0,43 0,49 0,57 0,62 
9 0,08 0,15 0,23 0,31 0,38 0,44 0,50 0,57 0,64 

10 0,08 0,16 0,23 0,31 0,38 0,45 0,52 0,59 0,65 
11 0,08 0,16 0,24 0,31 0,39 0,46 0,53 0,60 0,66 
12 0,08 0,16 0,24 0,32 0,39 0,47 0,54 0,61 0,67 

 
This consistency ratio CR simply reflects the consistency of the pair-wise judgements and shows 

the degree to which various sets of importance relativities can be reconciled into a single set of 
weights. In the above example, (1 larger than 2, 2 larger than 3, and 3 larger than 1) the consistency 
score would be poor, and would be considered a violation of the axiom of transitivity. AHP 
tolerates inconsistency through the amount of redundancy of judgements. For a matrix of dimension 
n only (n-1) comparisons are required to establish weights for the n items. The actual number of 
comparisons that can be performed in AHP is n(n-1)/2. This redundancy is conceptually analogous 
to estimating a number by calculating the average of repeated observations: the resulting set of 
weights is less sensitive to errors of judgement. 

A quick way to find the weight eigenvector, if one cannot solve exactly the largest eigenvalue 
problem, is that of normalizing each column in A, and then average the values across the rows: this 
“average column” is the normalized vector of weights (or priorities) w. We then obtain an estimate 
of λmax dividing each component of Aw (= λmaxw) by the corresponding component of w, and 
averaging. Finally, we can compute CI (and the corresponding CR) from this estimate of λmax in 
order to verify the goodness of the judgements. 



So far, we have illustrated the process for only one level in the hierarchy: when the model 
consists of more than one level then hierarchical composition is used to weight the eigenvectors by 
the weights of the criteria. The sum is taken over all weighted eigenvector entries corresponding to 
those in the lower level, and so on, resulting in a global priority vector for the lowest level of the 
hierarchy. The global priorities are essentially the result of distributing, or propagating, the weights 
of the hierarchy from one level to the next level below it. For the purpose of applying AHP to 
E&QCFFP estimation, this multi-level weighting is not required, as shown in the following section. 

 
4. Merging E&QCFFP and AHP 

 
The analogy between the hierarchical functional decomposition of E&QCFFP and the intrinsic 

hierarchy of AHP can be quite confusing; we must recall that the nodes in different levels in a AHP 
hierarchy carry very different meaning (going from the objective level, to the attribute level, to the 
alternative level), while in the E&QCFFP approach the decomposition is made only in order to 
separate different ranges (or groups) of  functions. This means that the elements of a E&QCFFP 
hierarchy are indeed all homogenous with respect to the attribute  to be estimated, i.e., the 
functional size. So there is no strict correspondence between the hierarchical structures in the two 
techniques, but still a strong tie can be found. Although AHP was developed as a mathematical 
method for prioritizing the alternatives, we can recognize that what we called importance is just an 
extensive property as many others, as software functional size is expected to be, too. 

When estimating the software functional size (number of CFSU), the only criteria is the size itself. 
Consequently, we can consider a simple AHP hierarchy, with only one level (and the objective 
“estimated size” above it); the nodes of this level are the n items listed by the estimator, eventually 
prior to the functional decomposition (this list could even include all from possible functional 
processes to macro-processes). 

In order to review the possible ways to merge E&QCFFP and AHP, let’s recall the intrinsic 
characteristics of both: AHP makes the subjective comparisons consistent through a mathematical 
step (the largest eigenvalue solution) and provides the CR to evaluate the self-consistency of the 
estimation, while the E&QCFFP alone provides a estimation together with an uncertainty range 
(minimum, most likely, and maximum values), permitting to assign a class to each item based on 
analogy (eventually with respect to known cases); note that the uncertainty range in the E&QCFFP 
can be quite large when using mostly the macro-process level. 

We could gain better forecasts by combining the two techniques; the possible ways to do the join 
are basically the following: 

a) AHP technique first applied to prioritize the items on a numerical scale, then automatic 
assignation of the E&QCFFP class from the scale. 

b) E&QCFFP technique first applied to allocate the set of items in functional classes, then AHP 
applied to refine the first estimation. 

The a) case can be considered as a “re-allocation” of a pure AHP estimation on the E&QCFFP 
classes; here some not-yet-solved problems may rise, as for example how to decide which AHP 
resulting numerical range should be assigned to a given E&QCFFP class. If we manage to solve this 
and similar problems, we can obtain a hierarchical representation of the estimated system as in a 
pure E&QCFFP technique, but with more robustness in the input (nonetheless, this could not result 
always in a more robust output forecast, due to the fact that E&QCFFP categories necessarily “blur” 
the exact ratios given by AHP). 

The b) case is to be considered more significantly, since it requires firstly an analogical 
approach, which is usually easier at the beginning for the human estimator, and after that a robust 
refinement of the estimation in a mathematical way. 

Depending on the desired precision or the time at our disposal in doing the estimation, we should 
decide on which variant to apply to estimate the COSMIC-FFP number: only by E&QCFFP, only 



by AHP, with the a) case or with the b) case. The last approach should result in the most accurate 
forecast, still saving us from applying an exact (and more time-consuming) COSMIC-FFP counting 
procedure. Next section deals more deeply with the b) case. 

 
5. The “b) case”: E&QCFFP + AHP 

 
The case is: 
1. E&QCFFP to allocate the items in subsets; 

2. AHP to revise/refine the estimation. 
Note that the first step already provides a first estimation, but its uncertainty could be quite wide, 

if the estimator dealt with one or more high-level class (e.g. general processes or macro-processes). 
The second step could be an AHP application on the global set of items from the first step, but since 
the pairwise ratios involved in such a global application would be of magnitude 102 and higher, it 
would be obviously very hard for a human estimator to provide such estimated ratios in the 
comparisons. An enhancement is to apply AHP separately on homogeneous subsets of the 
E&QCFFP items: 

E&QCFFP 

a11 a12 a13 
a21 a21 a23 
a31 a32 a33 

b11 b12 b13 
b21 b21 b23 
b31 b32 b33 

c11 c12 c13 
c21 c21 c23 
c31 c32 c33 

AHP 

AHP 

AHP 

x FP 

x GP 

x MP 

+            + x FP x GP x MP 

FP’s 

GP’s 

MP’s 

 
 
or only on two contiguous subsets per time (avoiding double sums in the total result): 

E&QCFFP 

a11 a12 a13 
a21 a21 a23 
a31 a32 a33 

b11 b12 b13 
b21 b21 b23 
b31 b32 b33 

AHP 

AHP 

x FP/GP 

x GP/MP 

+            + x FP x GP x MP 

FP’s 
 

GP’s 
 

MP’s 
 

 
 



The second variant, mixing and comparing Functional Processes with General Processes, and 
General Processes with Macro-Processes, would be the more self-consistent and coherent one. 

In any case, this approach would maintain the hierarchical representation of the system as firstly 
posed by the E&QCFFP estimator, but with a more consistent and robust numerical evaluation of 
each item compared to the others; the final estimated value is a revision of the first, pure E&QCFFP 
forecast, but with a lower uncertainty range (the original uncertainty range should be reduced, based 
on the value of the resulting CR). Eventually, some items could be re-allocated in terms of their 
E&QCFFP category, if the AHP step shows some significant change with respect to their original 
E&QCFFP allocation. 

We should not be too scared of the quantity of different comparisons to perform in every AHP 
step, since we know from section 3 that not all the comparisons have to be effectively performed, 
unless the CR is not low enough. So, monitoring the value of the CR after several incremental 
iterations of the AHP step, we could decide to stop them when the CR satisfies a predefined 
accuracy level. 

When deriving the final estimation result, two approaches are possible: one or more items should 
be fixed in their CFSU value, as “landmarks”, to propagate the number of assigned CFSU to the whole 
set, or the whole set can be mapped in a “fuzzy” way onto an ordered scale of items, as the 
E&QCFFP classes, with assigned quantities of CFSU. Future field trials should show which approach 
is preferable. 

The landmarks could be put among the original unknown items to help in both the E&QCFFP 
and the subsequent AHP step. These landmarks could be taken from a so-called Experience Data 
Base (or Catalogue of Typical Elements). This catalogue could contain for example all the typical 
processes or functions that can be identified in a generic project, and their average quantities of 
CFSU. Once some of these typical elements are identified among the list of items, the comparison 
matrix (or matrices) would greatly benefit of the relative ratios between them. A generic useful case 
of “typical element” would be the already cited Typical Process, or CRUD, which is usually very 
easy to identify and to use as a comparison landmark. In case of more than one landmark, further 
research is necessary to establish the exact mathematical procedure to fix their values, while 
propagating the quantities of CFSU through the unknown items. 

A special case of application would be when the E&QCFFP step provides a list of items, all 
classified at the Functional Process level. In this case, the whole set would be taken into account for 
a unique AHP step, in order to compare directly the quantities of data movements contained in each 
process; this means that it could be significant to compare directly estimated quantities of CFSU 
(but still without exactly counting them). 

 
6. Numerical examples 

 
Several AHP cases have been studied, as depicted in the following tables. In every case, we have 

n = 10 items, and we assume that the comparisons made between the 1st item and each of the 
remaining items (i.e. the first column/row of the matrix A) are the “best” estimates; eventual 
inconsistency is put in the remaining comparisons (i.e. between 2nd, 3rd, …, and 10th item). What 
differentiates each case is the expected ratio between each of the 10 items. Since the field trials are 
still to provide actual numbers of CFSU for E&QCFFP, for sake of clarity in the examples we 
consider the first item always with unitary size. 

For each case, different inconsistency errors were introduced separately on each pairwise 
comparison (except for comparisons between the 1st item and the others, assumed as correct) to 
simulate the human pairwise comparisons: uniformly random ±10%, ±25%, ±50%, ±75%, ±90%, 
and ±100% errors. For example, the 100% error means that, while the estimator should evaluate 
“item i is p-times item j” the simulation could put “item i is 2p-times item j” (doubling the expected 
ratio, i.e. with a 100% error). For each case and each error range, 1000-samples statistics have been 



generated; all values are approximated at one decimal. The first column of each table denotes the 
maximum error for single pair comparison. 

 
Case A: (1,1,1, 1,1,1, 1,1,1,1), Total = 10, CI(n=10, max ratio=10)=0.65. 

Error λmax CR Estimates (average) Total ∆% 
10% 10.0 0.2% (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) 10.3 3% 
25% 10.1 1.6% (1.1,1.1, 1.1,1.1, 1.1,1.1, 1.1,1.1, 1.1,1.1) 10.7 7% 
50% 10.3 4.8% (1.1, 1.2, 1.2, 1.2, 1.2, 1.2,1.1,1.1,1.1,1.1) 11.6 16% 
75% 10.8 14.2% (1.2,1.5,1.4,1.4,1.4,1.3,1.3,1.2,1.2,1.2) 13.1 31% 
90% 11.7 28.7% (1.3,1.8,1.7,1.6,1.6,1.5,1.4,1.3,1.3,1.2) 14.8 48% 

100% 15.3 90.3% (1.5,3.4,3.6,3.1,2.8,2.3,2.2,1.8,1.6,1.4) 23.6 136% 
 

Case B: (1,1,1, 1,1,1, 1,1,1,10), Total = 19, CI(n=10, max ratio=10)=0.65. 
Error λmax CR Estimates (average) Total ∆% 

10% 10.0 0.2% (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,10.2) 19.5 3% 
25% 10.1 1.2% (1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1,10.6) 20.2 6% 
50% 10.3 4.8% (1.1, 1.2, 1.2, 1.2, 1.2,1.1,1.1,1.1,1.1,11.1) 21.4 13% 
75% 10.8 14.2% (1.2,1.4,1.4,1.4,1.3,1.3,1.2,1.2,1.2,11.5) 23.0 21% 
90% 11.7 29.1% (1.2,1.8,1.7,1.6,1.5,1.4,1.4,1.3,1.2,11.8) 25.0 32% 

100% 15.3 90.1% (1.4,4.0,4.2,3.1,2.7,2.2,1.8,1.8,1.4,13.2) 35.8 88% 
 

Case C: (1,2,3,4,5,6,7,8,9,10), Total = 55, CI(n=10, max ratio=10)=0.65. 
Error λmax CR Estimates (average) Total ∆% 

10% 10.0 0.2% (1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0) 55.0 0.0% 
25% 10.1 1.2% (1.0,2.0,3.0,4.0,5.1,6.0,7.0,8.0,9.0,10.0) 55.2 0.4% 
50% 10.3 4.8% (1.0,2.1,3.2,4.2,5.2,6.2,7.1,8.1,9.0,9.9) 56.1 2.0% 
75% 10.8 14.2% (1.0,2.4,3.5,4.6,5.6,6.5,7.4,8.3,9.1,9.9) 58.3 6% 
90% 11.7 29.6% (1.0,2.9,4.1,5.2,6.2,7.1,7.9,8.6,9.1,9.6) 61.8 12% 

100% 15.3 95.4% (1.0,4.6,6.4,8.2,8.5,10.1,9.8,10.0,10.0,9.4) 78.0 42% 
 

Case D: (1,1,1, 1,1,10, 10,10,10,10), Total = 55, CI(n=10, max ratio=10)=0.65. 
Error λmax CR Estimates (average) Total ∆% 

10% 10.0 0.2% (1.0,1.0,1.0,1.0,1.0,10.2,10.2,10.2,10.2,10.2) 55.9 1.6% 
25% 10.1 1.2% (1.0,1.1,1.1,1.0,1.0,10.5,10.4,10.4,10.4,10.3) 57.3 4.2% 
50% 10.3 4.8% (1.1,1.1,1.1,1.1,1.1,10.9,10.9,10.8,10.6,10.6) 59.3 8% 
75% 10.8 14.2% (1.1,1.3,1.3,1.2,1.2,11.7,11.3,11.1,10.8,10.5) 61.4 12% 
90% 11.7 29.3% (1.1,1.5,1.5,1.4,1.3,12.9,12.2,11.7,10.9,10.5) 65.0 18% 

100% 15.3 90.1% (1.1,2.8,2.5,2.0,1.9,16.5,15.6,14.0,12.3,10.6) 79.5 45% 
 

Case E: (1,5,10, 15,20,25, 30,35,40,45), Total = 226, CI(n=10, max ratio=10)=2.36. 
Error λmax CR Estimates (average) Total ∆% 

10% 10.0 0.1% (1.0,5.0,10.0,15.0,20.0,25.0,30.0,35.1,40.0,44.9) 226.0 0.0% 
25% 10.1 0.3% (1.0,5.1,10.1,15.2,20.2,25.2,30.1,35.2,40.0,44.9) 227.0 0.4% 
50% 10.3 1.3% (1.0,5.4,10.6,15.8,20.7,25.7,30.6,35.6,40.1,44.5) 230.0 1.8% 
75% 10.8 3.9% (1.0,6.1,11.8,17.2,22.4,27.2,32.2,35.9,40.0,44.4) 238.2 5% 
90% 11.7 8.0% (1.0,7.1,13.7,19.5,24.6,29.3,33.9,37.6,40.9,44.0) 251.6 11% 

100% 15.4 25.6% (1.0,12.3,21.6,28.7,32.3,41.4,41.2,43.5,42.5,42.6) 307.1 36% 
 
Note that for uniformly random errors from 10% to 50% we always get acceptable CR values, 

and the final per cent deviation between expected and estimated values (∆%) is always no more than 
3-times the CR value. 

As we stated in section 3, the largest eigenvalue λmax is always > n, and increases as the average 
error in the comparisons increases. Moreover, almost everywhere each item is overestimated with 
respect to its expected value; exception are cases C and E (those with the most widespread values), 
where the 10th item is underestimated and counterbalances the overestimation of the remaining 9 
items. However, every estimation is globally over the total expected value: this should be taken as a 
general property, i.e. the AHP estimation is to be taken as an upper threshold. 



Relevant cases are: 
Case A. In this case (all items expected as identical), the more error we put in the simulation, the 

most error we get in the estimated total. This could be explained as follows: if the set is strongly 
homogeneous (all items identical) we should not be too “easy” in estimating wrong ratios between 
the items. 

Case E. This case involves a wide range of items, putting together the first item (unitary size) 
with a 45-times larger item (the 10th). In this case even a strong (random) error up to 90% on some 
comparisons is “blurred” by AHP to give a 11% deviation for the total estimation. 

 
7. Further discussion and conclusion 

 
The examples above are very encouraging, but much investigation has still to be made. For 

example, very large cases (very high n) introduce difficulties in managing the items. From this 
perspective, is noticeable that the original AHP deals only with small n; a suggestion is to try to use 
homogenous clusters of items, and to make comparisons between these clusters. Of course, further 
research in realistic, field trials is strongly encouraged to test the proposed approach in different 
situations. 

As cited above, the fact that only a single value is to be provided, besides of the relative weight 
estimates, does not mean that more than one true value cannot be used: e.g., if we know the values 
of items 1, 2 and 3, this means that we have more confidence in fixing several weights in the 
comparison matrix; de facto, in this way we do use  the richer information. A further research theme 
should be on how to make some landmarks to “weight” more than others, if their value is far more 
accurate. 

AHP is a powerful means for several tasks in the estimation and decision making field. The 
proposed combination with the E&QCFFP technique can solve those situation in which the only 
E&QCFFP does not provide good results, especially due to atypical or new situations, not collected 
in the historical statistics, or when it is used identifying few, high level items, providing too wide 
ranges of uncertainty. 

 
8. References 
[1] Abran, Desharnais, Oligny, St-Pierre, Symons, “COSMIC-FFP Measurement Manual, version 2.0”, Ed. 

S. Oligny, Software Engineering Management Research Lab., Université du Québec à Montréal 
(Canada), October, 1999. 

[2] Meli, R., Abran A., Ho V.T., and Oligny S., “On the applicability of COSMIC-FFP for measuring 
software throughout its life cycle”, ESCOM-SCOPE 2000, Munich, April 18-20, 2000. 

[3] Meli, R. and Santillo, L., “Function Point Estimation Methods - A Comparative Overview”, FESMA 99, 
Amsterdam, October 6-8, 1999. 

[4] Saaty, T.L. and Alexander, J.M., “Thinking with Models”, Pergamon Press, 1981. 
[5] Santillo, L., “Early FP Estimation and the Analytic Hierarchy Process”, ESCOM-SCOPE 2000, Munich, 

April 18-20, 2000. 


