
ESE - Enhanced Software Estimation
Luca Santillo (luca.santillo@gmail.com, www.agilemetrics.it)

Introduction

Software estimation research to date offers several alternative methods for forecasting effort,
duration, and costs of software projects. In most of them, the major role is played by the size-
effort relationship, while costs and duration forecasts are provided through subsequent steps,
based on sound project-management structured methods. (Nevertheless, direct statistical
regression can be found between project size and duration, average staff, and so on.)

Each method has positive elements and drawbacks. Particularly, the industry environment
deplores the possibly large inaccuracy of the results of the various estimation methods, often
leading to large deviations between the contract effort and/or cost and the actual values at the end
of the project. Such deviations — in practice often justified by some heuristic, sometimes case by
case, or just refunded by means of some financial or executive ad hoc mechanism — cannot be
removed entirely, by definition of “estimation,” but they can be strongly reduced by means of a
combination of each estimation method’s positive elements.

This chapter depicts the fundamental integration of various software estimation methods,
usually used separately and as alternatives, and the differentiation of some of their parameters to
provide a more accurate and more realistic effort forecast. Together with the theoretical picture of
such an enhanced software estimation (ESE) method, a structured approach is proposed for
selecting basic parameters and for assigning their coefficients in the specific context.

The Basic Model: IFPUG Guidelines and ISBSG Benchmark

The software estimation method proposed in the IFPUG Guidelines to Software
Measurement ([IFPUG 2001]) correlates the global project functional size, expressed in
function points, with the work effort, expressed in person hours, required to implement
the project. More precisely, the IFPUG Guidelines propose to “convert the calculated size
to effort hours using normalized delivery rates. Project histories yield the normalized
delivery rate of function points per hour […]:”

PWE PDR Size= ⋅ (0.1)

where PWE is the estimated project work effort in person hours, Size is the functional
size of the project in function point, and PDR is the expected project delivery rate, given
in person hours per function point (sometimes the reciprocal of this number is used,
expressed, obviously, in function point per person hour). A further step is then proposed
to convert the estimated effort hours to labor cost, using dollars per hour and including
“other costs” such as equipment, training, and so on. The proposed sequence should be
reiterated at each project life-cycle phase by using the more detailed requirements to
recalculate size, estimated effort hours, labor cost, and total estimated cost.

mailto:luca.santillo@gmail.com�
http://www.agilemetrics.it/�

As stated, the PDR should be calculated from previous projects. The IFPUG
Guidelines specify that “the normalized delivery rates will vary depending on the project
profile.” To normalize delivery rates, a set of Application and Project Attributes to collect
and analyze is suggested (see Table 24–1). Attributes should then be used to identify
projects with similar characteristics so that appropriate comparisons can be made and
normalized delivery rates can be derived.

Table 24–1: Application and Project Attributes (IFPUG Guidelines to Software Measurement)

General Project
Characteristics

Resources Process and Project
Management

Technology

Project type Technical experience Methodology Database management systems
Project characteristics Business experience in

functional area
Project management
approach

Number of database management
systems

Architecture User Modeling techniques Development platform
Degree of innovation Support Standards used Physical environment
Relative project
complexity

Software developer Percentage of reusable
code

Testing and debugging tools

System performance
requirements

Training Release strategy Automated testing tools

Project team Project structure Code analysis tools
Organization Configuration management tools
 Development language(s)
 Operating system(s)
 Communication requirements
 Case tools

Some of these suggestions, in a global framework, have been taken by the International
Software Benchmarking Standards Group (ISBSG), which collects and publishes the so-
called benchmark. The ISBSG found a strong correlation between Size and PWE,
adopting the power formula:

regrB
regrPWE A Size= ⋅ (0.2)

Equivalently, we can express the same kind of correlation between PDR and Size:

1/ /regr regrB B
regr regrPDR PWE Size A Size Size A Size −= = ⋅ = ⋅ (0.3)

Equations (1.2) and (1.3) include the regression parameters Aregr and Bregr, which are
derived by the best fit of the benchmarking data. The data can be filtered on several
project attributes, but once we choose these filters, the values of Aregr and Bregr are
derived solely on a statistical regression basis, with no intrinsic rationale apart from some
heuristic explanation of their actual value [ISBSG 1998].

The most recent results from ISBSG [ISBSG 2001] show that the most impacting
factors in the correlation analysis are platform and primary programming language. Other
factors, such as business area, application type, and CASE tools, affect the PDR, too, but
their influence is lower than the first two.

To Adjust or Not To Adjust: The VAF Issue

The current IFPUG approach to software size measurement includes calculation of
the value adjustment factor (VAF) by the addition of 14 general system characteristics,
each of which has a possible weight of zero to five. As noted by Zuse (ZUSE 1998),
these fourteen factors are confusing: they introduce some technical adjustment on the
unadjusted function point count, but their scale can result in some not-normalized result.
Moreover, the resulting size is no longer a “functional size.”

According to these considerations and in order to propose the FP method as a
candidate to the ISO working Group devoted to the definition of a standard for software
functional measurement, IFPUG has to consider the possible use of unadjusted function
point as the main, merely functional software size. Therefore, we should use the
unadjusted function point count as the primary effort driver in the estimation process.
This does not mean that the 14 general characteristics are not to be considered, but rather
that their influence is to be taken into account in some other way during the whole effort
estimation process, not only on size, because the average effort of software development
derives from technical or quality characteristics beyond mere size.

Internal Benchmarking: The “Best of” Issue

The repository on which the ISBSG benchmark is calculated represents the best part
of the software industry (probably the “best 25%”). When using ISBSG results, therefore,
we should be aware that the true average values of some or all the parameters could be
different from those published by ISBSG. A single organization should perform its own
local benchmarking to achieve a realistic analysis of its capabilities and to use it for
further estimations.

This calibration of statistical as well as a priori estimation parameters and their
equations is always required in order to reduce errors in the estimation. Regression from
a global benchmark is a good macroeconomic positioning tool, but it can be very
inexpedient as an estimation tool if we are not aware of the differences between our
project and the globally average project.

An Algorithmic Model: Constructive Cost Model

COCOMO (Constructive Cost Model) by Boehm (COCOMOII 1997)is the most
famous algorithmic model for effort (and time) estimation for software projects, since the
late 1970s. Here we briefly describe the basic model in its most recent form, called
COCOMOII.

The first step of COCOMOII is the estimation of the unadjusted, or nominal project
work effort:

B
nomPWE A Size= ⋅ (0.4)

Note the apparent similarity to the function fitted by the ISBSG; in particular, here A is a
constant statistically determined, as in the ISBSG regression model. Still there are some
remarkable differences:

• Size is measured in source lines of code (LOC). Actually, COCOMOII
allows us to use function points and then converts them to LOC with the so-
called backfiring approach (see also “FP & LOC: The Backfiring Issue”).

• The exponent B is calculated with some rationale through some scaling
drivers. The assignments of these scaling drivers can strongly affect the
precision of the overall estimation result because of the position of B as an
exponent (see also “How sure are we: The Uncertainty Issue”).

The second step of the basic COCOMOII is the adjustment of the nominal PWEnom to
the final PWE, by multiplying with the cost drivers of the project (CDi). The number of
these factors, depending on the phase in which we are conducting our estimation, is 7
(Early Design Model) or is “exploded” into 17 (Post-Architecture Model):

B
nom i i

i i

PWE PWE CD A Size CD= ⋅ = ⋅ ⋅∏ ∏ (0.5)

The cost drivers are project attributes such as Required Reuse, Platform Difficulty,
Personnel Experience, and Schedule; they represent context-specific considerations. Each
CD can be a number larger or smaller than 1, so that the overall adjustment of the
nominal effort can strongly reduce or increase the nominal effort estimation, depending
on the values of the actual project attributes. The value of each factor is assigned with the
help of a nominal scale from Very Low to Extra High; the Nominal (neutral) value is
exactly 1 so that it does not influence the adjustment. The use of nominal versus ordinal
scales in different method variants can be faced with the help of fuzzy logic concepts.

As for benchmarking, the scale values of each COCOMO factor should be calibrated
to reflect the local situation in each organization environment.

FP & LOC: The Backfiring Issue

The backfiring approach employs the relation between physical size (expressed in
lines of code) and effort, determined statistically, depending on the programming
language used, or the language level, and assumes a bond between functional size (FP)
and physical size (LOC). This bond has been strongly criticized because of the different
dimensions (attributes) measured by the two metrics: LOC and FP are not equivalent but
rather complementary metrics.

Conversion of LOC to FP (and vice versa) should be avoided, because it can
introduce the strongest error in the estimation process.

Parametric Models: The Simplicity versus Differentiation Issue

Evaluating size alone to estimate effort would be good. This would be easy and quick,
but both the benchmarking by ISBSG and the algorithmic model of COCOMO show that
it’s very risky not to take into account several “adjustment” factors to differentiate the
given project from the average project in the sample used as a basis for the estimates.

Of course, every additional parameter in the chosen model needs methods, metrics,
and time to be evaluated. This means every parameter can add possible errors in the
estimation process (see also “How Sure Are We: The Uncertainty Issue”).

We should at least filter the initial benchmarking database by some main categories,
such as project type (development or enhancement) and main programming language
level, and use at least some of the adjustment factors proposed by any algorithmic model,
such as COCOMO. Overusing this filtering process in search of the most similar projects
usually results in a sample too small to provide significant statistics: as every project
manager knows, “each project is different.” The statistical sample to start from should be
much larger than the number of freedom degrees of the studied relationship
corresponding to the possible influencing project attributes.

In the research field, there are some evidences that, although the list of factors
impacting the size-effort relationship is not fixed for every environment and business
area, the number of these factors should be not large (10–15 independent factors work
well). Many factors could be identified, but only some of them have a strong influence on
the final effort for each project. This is especially true when an organization establishes
its own software metrics databases in addition to benchmarking its data against that of
other companies. In this case, accurate effort estimation is possible with just a very small
number of productivity factors.

For each product area, experience can show which factors to include and which to
exclude for each new project in that area. A way to extract and prioritize such relevant
factors from a larger set of possible attributes is the Analytic Hierarchy Process (AHP), a
quantification technique of expert judgments.

AHP, originally proposed by Saaty in [SAATY 1981] and then recalled several times
in the software engineering field, provides a means of making decisions or choices
among n homogeneous alternatives. The method requires pair-wise comparisons to be
made between each two factors with respect to their importance in the effort influence
impact. Comparisons are made by posing the question, “Of two factors i and j, which is
more important and how much more?” The strength of preference is usually expressed on
a ratio scale of 1:9. A preference of 1 indicates equality between two factors, while a
preference of 9 (absolute importance) indicates that a factor is nine times more important
than the one to which is being compared.

The pair-wise comparisons result in a reciprocal n-by-n matrix M, where mii = 1 (on
the diagonal) and mji = 1/ mij (reciprocity property, assuming that if factor i is “x-times”
more important than factor j, then factor j is “1/x-times” more important, or equally “x-
times” less important than factor i). Given this comparison matrix, we can recover the
prioritization scale of the n factors; a quick way to do that is to normalize each column in
M and then average the values across the rows: this “average column” is the normalized
vector of weights (or priorities) of the n factors. It is also possible to compute a
consistency index based on the properties of the matrix M to verify the goodness of the
judgments.

The weights of relative importance of the factors can then be used to select only the
first ones, or more exhaustively to use all of them, but to compare the errors in their
evaluation with respect to their importance for influencing the effort estimation.

The Software Reuse Issue

Software reuse is the process of creating software systems from predefined software
components. A reusable component may be code, but at all levels of development —

from requirements specifications to code — there are components that by the nature of
implementing tasks and representing information on a computer must appear over and
over in software applications: requirements, specifications, designs, test cases, data,
prototypes, plans, documentation, frameworks, templates, and so on ([McClure 1995]).
Many studies demonstrate that software reuse can cut software development time and
costs; moreover, when software is reused multiple times, the defects fixed in each reuse
accumulate, resulting in higher quality. Generally, reuse is to be considered among the
most important factors impacting productivity.

From the Rine and Nada research surveys ([RINE 1998, NADA 1998]), for example,
we find that, out of about one hundred projects:

• 57% of the projects realized high commonality with the requirements of
previous project(s) at the requirements phase.

• 43% of the projects realized high commonality with the design of previous
project(s) at the design phase.

• 38% of the projects realized high commonality with the code (documentation)
of previous project(s).

Rine and Nada, in their Reuse Reference Model (RRM), propose five reuse levels as a
reuse global attribute of a software project (see Table 24–2).

Table 24–2: Reuse Reference Model Levels

Abbreviation Level Nominal Value Percent Commonality
RL1 Level 1 Very Low 0–20%
RL2 Level 2 Low 21–40%
RL3 Level 3 Average 41–60%
RL4 Level 4 High 61–80%
RL5 Level 5 Very High >80%

The FP size of a software project is calculated according to the IFPUG current rules,

without taking into account software reuse. The obtained number is the size of actual
functionality provided to the user (note that the general system characteristic called
Reusability, in the VAF evaluation, if used, is meant to increase the size when there are
explicit requirements of reuse in future projects; it’s not a measure of a component’s past
reuse in the current project).

In the COCOMOII model, reuse is more explicitly taken into account: it can be used
as a percentage to adjust the size and is also one of the 17 factors used to adjust the effort
estimation. We therefore propose to apply the reuse level at the size stage, adjusting the
measured size of the project to represent the effective size to be worked (developed or
maintained). The reuse percentage may consist of, or may be derived from, the following
categories (with total equal to 100 percent):

• Reused percentage of developed components from other projects
• Reused percentage of commercial off-the-shelf components
• Developed percentage of components for reuse by other projects
• Developed percentage of components unique to the identified projects

This can be considered the zero-order precision reuse measurement. A more efficient
way to take reuse into account would be specific measurement of the reuse adjustment of
each measured component (that is, of each ILF, EIF, EI, EO, and EQ counted for the
studied project). For example, in [ABRAN 1995] we find that “there is an interesting
mapping between the EIF definition and the conventional interpretation of data reused ‘as
is,’ without modification, which is called ‘black-box reuse.’ We can then say that an EIF
is a reuse logical file.” For each counted function, we should define a reuse percentage,
based on similarities with other functions in the same project or similar projects in the
same area. The similarity can be estimated or based on common data element types,
record element types, or file types referenced, as proposed by the Netherlands FP users
group ([NESMA 2000]).

Note that reusing has a cost of its own that should be taken into account at the project
level as well as at the organization level. Moreover, not having a benchmark of current
organizational practices that enables us to determine what effort is actually avoided
through reuse could lead to a misleading percentage reuse metric.

The Intrinsic Complexity Issue

One of the main reasons for the initial resistance to the introduction of functional
measurement methods in the industry has been the fact that the intrinsic (read
“algorithmic”) complexity of software systems seemed not enough taken into account.
This led to the introduction of some general system characteristics, such as complex
processing, in the VAF factor of the IFPUG method, or the CPLX adjustment factor of
the COCOMOII estimation model. Apart from general discussion about applying
nonfunctional factors to the size (the VAF issue), we should look for a more accurate
method to include this factor in the effort-estimation model. As for software reuse, we
can think of a granular adjustment of the FP number at each element level, to achieve a
second effective size next to the reuse-adjusted size. This adjustment can be obtained by
applying a coefficient, usually in the interval (0, 2), to the number of FP of each element.
Several guidelines and proposed classes can be found in the literature to help choose
these complexity values.

Requirements Volatility: The Change Requests Issue

The IFPUG Guidelines, regarding the scope change, state that

“… the later in a project change is introduced, the more costly it is to implement.
Introducing a change early in the project, such as in requirements analysis, causes
little additional work. A requirements change during construction may require
significant changes to the architecture, design, and previously tested and
approved components causing large amounts of rework and increasing the cost.
When estimating changes to a system or project, it is important that the impact of
the change is fully assessed and the size is correctly estimated.”

The quantity of scope changes is therefore another important factor that can strongly
influence the true value of effort, cost, and time of the project. During the project, we
should trace the change requests to analyze their impact. Although the COCOMO model
considers requirements volatility (RVOL) to be a global adjustment factor of the

estimation, a more granular, quantitative approach (related to the FP measurement
method) has been proposed recently by Meli [MELI 2001].

How Sure Are We: The Uncertainty Issue

The IFPUG Guidelines recognize the uncertainty of estimates. Because the scope of
the project is not fully defined early, the size is not accurately known. Different values
estimated for the size provide different estimates for the effort, of course, but this fact
does not provide in itself any consideration of the precision of a single estimate. Any
estimation model cannot be seriously performed without consideration of its possible
deviations between estimated and true values.

COCOMOII proposes some simple ranges for optimistic and pessimistic estimates as
half the original estimate or twice the original estimate, but this range can be determined
more accurately with the following approach. Let’s apply the method the physical
sciences have used for centuries when performing measurements: error analysis, or the
theory of measurement error propagation [TAYLOR 1982].

Let the function y = y(x1, …, xN) be the model we use to estimate the dependent
variable y from the N independent variables xi, …, xN, and let xi be the estimated error
on the value measured for each variable xi. That is, the true value of xi belongs to the
interval (xi ± xi) for each i from 1 to N. Then the true value of y belongs to the interval
[y(x1, …, xN) ± y], where y is given from the derivatives formula:

2 22

1
1 1

N

i N
i i N

y y yy x x x
x x x=

     ∂ ∂ ∂
 ∆ = ∆ = ∆ + + ∆    ∂ ∂ ∂       

∑  (0.6)

Let’s see an application example. To derive the development effort y (in person hours) to
the size x (in function points) of a software program, we can use the function:

By A x= ⋅ (0.7)

For this example, consider A = 10 ± 1, B = 1.10 ± 0.01 (the proposed values are only
valid for this example and should not be applied to any actual case). Note that having
fixed statistical values for some parameters in our model does not mean necessarily that
these values are exact: their associated errors can be derived from the standard deviation
of the statistical sample from the fitting function y. Depending on the reliability of the
sample, such errors could be considered significant or not.

To evaluate the error on y, given the errors on the parameters A and B and on the
independent variable x, we have to perform some calculus, recalling that

() () ()1 , , lnB B B B B BA x A B x A x x A x A x x
x A B

−∂ ∂ ∂
⋅ = ⋅ ⋅ ⋅ = ⋅ = ⋅ ⋅

∂ ∂ ∂
 (0.8)

We then apply some measurement process and obtain for x the estimated value of
1,000 ± 200 FP, or a possible uncertainty of 20 percent. Collecting all data and applying
the equation [1.1] to this example, we then obtain:

1.1010 1,000 19,952.6By A x= ⋅ = ⋅ = (person hours) (0.9)

() () ()2 2 21 lnB B By A B x x x A A x x B−     ∆ = ⋅ ⋅ ∆ + ∆ + ⋅ ⋅ ∆ =     

[] [] []2 2 221.948 200 1,995.262 1 137,827.838 0.01 5,015.9= × + × + × = (person hours)
 (0.10)

Taking only the first significant digit of the error, we obtain for y the estimated range
20,000 ± 5000, or a possible uncertainty of 25 percent. Note that the percent error on y is
not the simple sum of the percent errors on A, B, and x, because the function assumed in
this example is not linear.

A similar calculation, on the second step of the COCOMOII model, yields:

adj nom i
i

y y f= ⋅∏ (0.11)

,
i

i
nom i i nom i nom

i i inom j j

f
y f f y f y

y f f
∂ ∂   

⋅ = ⋅ = ⋅   ∂ ∂   

∏
∏ ∏ ∏ (0.12)

If, for example, we have ynom = 20,000 ± 5000, and 7 factors fi, for each of which (for
simplicity of the example) we assume the same value = 0.95 ± 0.05), then:

7
7

1

20,000 0.95 20,000 0.95 13,966.7adj nom i
i

y y f= ⋅ = ⋅ = ⋅ =∏ ∏ (0.13)

2 2
2

1 7
1 7

i i
i i

adj i nom nom nom
i

f f
y f y y f y f

f f

      
         ∆ = ∆ + ⋅ ∆ + + ⋅ ∆ =                        

∏ ∏
∏ 

() ()
2

2 2 71

1 7
i nom nom

i

fff y y
f f

 ∆∆ 
= ∆ + + + =  
   
∏ 

() ()
2

2 27 0.05 0.050.95 5,000 20,000 5,146.8 5000
0.95 0.95

 = ⋅ + + + = 
 

  (0.14)

We therefore see that each new factor in the estimation process can apparently make
the estimation more accurate (the yadj is reduced with respect to its nominal value because
all the factors are smaller than 1), but its percent error is increased (it’s now about 36
percent, versus the 25 percent of the nominal estimate).

Case by case we should decide whether to accept the measured value of each factor in
the model, to refine it (reducing its error), or to completely avoid using that factor in the
overall model.

Enhanced Software Estimation: An Integration

Enhanced Software Estimation (ESE), release 2001, is based on integration of the
previously depicted approaches: benchmarking statistical results and the constructive cost
model, with considerations about the specific issues we have addressed (reuse, change
request, and error analysis).

ESE can be shortly illustrated as a practical recipe:
1. Prepare a local benchmark data set of historical projects (otherwise, get an external, global

data set, such as the ISBSG repository).
2. Filter the benchmark data set to match as much as possible the profile of the new

project; do not overuse filtering.
3. Calculate the nominal effort regression equation from the selected subset, using

unadjusted FP as the size quantity:
regrB

nom regrPWE A UFP= ⋅ (0.15)

4. Measure or estimate the size of the new project (UFP) and evaluate its general system
characteristics.

5. Adjust the size from point 4 (UFP) with intrinsic complexity, function by function if
possible (unless you used intrinsic complexity explicitly to filter the benchmark data
set). Call this number XCUFP (extended by complexity unadjusted FP).

6. Adjust the size from point 5 with reuse percent metric, function by function if
possible (unless you used software reuse explicitly to filter the benchmark data set).
Call this number XCRUFP (extended by complexity and reuse unadjusted FP).

7. Calculate the nominal effort estimate by applying equation (1.15) to the size measure
from point 6 (XCRUFP):

regrB
nom regrPWE A XCRUFP= ⋅ (0.16)

8. Consider a set of possible cost drivers, starting from the COCOMO list, the VAF list,
and such. Exclude every factor that has already been used when filtering the
benchmark data set (point 2) and/or cannot be adequately measured or estimated for
the new project.

9. Prioritize the factors extracted at point 8.
10. For the factors extracted at point 8, validate the calibration of values to the new

project domain. Pay maximum attention to the values of the factors that come first in
the prioritization order from point 9.

11. Evaluate the factors extracted at point 8 and adjust by multiplication the nominal
effort estimation from point 7:

adj nom selected
selection

PWE PWE EM= ⋅ ∏ (0.17)

12. Calculate error propagation on the output estimate, from the estimated errors on the
input estimates and factors, as depicted in the section “How Sure Are We: The
Uncertainty Issue”.

13. Trace and measure change requests during the project.
14. Reiterate the estimation process during the project to refine the estimates and/or to

take into account any change request.

Future Enhancements

A lot of issues still need to be faced, included, or solved in the actual ESE 2001
model. For example:
• ESE takes FP as an alternative measure for software projects, instead of the original

LOC measure from the COCOMO model. Recent research trends show that these
metrics are still both useful for different kinds of estimation issues. An integration of
these and other possible metrics, as depicted by Meli [MELI 2001], is expected to
provide better estimation results.

• Integration between estimation models, such as benchmarking statistics, the
COCOMO model, and others, has to be performed, carefully avoiding duplication or
partial overlap in productivity factors. For example, the reuse factor of any estimation
model can overlap with other factors, such as team experience, quality, and so on.

• FP are often estimated, not counted, due to a lack of precision in the requirement
elicitation. Several ways to estimate FP exist; one of the more reliable is Early &
Quick Function Point Analysis (EQFPA) illustrated in the corresponding chapter of
this book.

• The reuse issue itself deserves much more attention. Structured reuse metrics are
required, and reuse impact on effort estimation is the subject of future research.

• ESE is a sequential model, from (estimated) size to estimated effort; from this value,
we can then obtain estimate costs and time forecasts for the project. Sound statistics
show how these factors are strongly interrelated so that schedule compression, for
example, can increase the effort required in a nonlinear way, while decreasing
quality. A recent trend is to consider all project attributes to be linked by Bayesian
probabilistic inference (one of the first proposals is by Fenton, in [FENTON 1999]).

Solving such issues is the goal of future research, and the possible solutions will be
included in future releases of ESE.

References
[ABRAN 1995] Abran, A., Desharnais, J., Measurement of functional reuse in maintenance,
Journal of Software Maintenance: Research and Practice, vol. 7, no. 4, 1995.
[COCOMOII 1997] Boehm, B., et al., COCOMO II Model Definition Manual, Version 1.4,
University of Southern California, 1997.
[FENTON 1999] Fenton, N., Neil, M., Software Metrics and Risk, FESMA 99 Proceedings,
Amsterdam, 1999.
[IFPUG 2001] - International Function Point Users Group, Guidelines to Software Measurement,
Version 1.1, IFPUG, www.ifpug.org
[ISBSG 1998] Milne, B.J., Luxford, K.B.G., Worlwide Software Development – The Benchmark,
Release 5, International Software Benchmarking Standards Group, 1998.

, 2001.

[ISBSG 2001] Hill, P.R., Practical Project Estimation – A toolkit for estimating software
development effort and duration, ISBSG & SEA, 2001.
[LIM 1999] Lim, W.C., Why the Reuse Percent Metric should never be used alone, Annual
Workshops on Institutionalizing Software Reuse, WISR 9, Austin, 1999.
[MCCLURE 1995] McClure, C., Model-driven software reuse, Extended Intelligence, Inc., 1995.
[MELI 2001] Meli, R., Measuring Change Requests to support effective project management
practices, ESCOM 2001 Proceedings, London, 2001.
[NADA 1998] Nada, N., Rine, D. C., A Validated Software Reuse Reference Model Supporting
Component-Based Management, International Workshop on Component-Based Software
Engineering, 1998.
[NESMA 2000] Hennie Huijgens, Estimating cost of software maintenance: a real case example,
NESMA, www.nesma.nl
[RINE 1998] Software Reuse Manufacturing Reference Model: Development and Validation,
Survey, School of Information Technology and Engineering, George Mason University, Fairfax,
Virginia, 1998.

, 2000.

[SAATY 1981] Saaty, T.L., Alexander, J.M., Thinking with Models, Pergamon Press, 1981.
[TAYLOR 1982] Taylor, J.R., An Introduction to Error Analysis, The Study of Uncertainties in
Physical Measurements, University Science Books, 1982.
[ZUSE 1998] Zuse, H., A Framework of Software Measurement, de Gruyter, 1998.

